In the ocean and soil, most of the total phosphorus exists in complex organic forms, which requires enzymes, commonly known as phosphatases, to release the phosphate so that plants and algae can use it as a nutrient.
Researchers at the University's Institute for Sustainable Food have identified a unique bacterial phosphatase abundant in the environment called PafA, that can efficiently release the phosphate used in fertilizers from its organic forms.
The study used a Flavobacterium model to look at the PafA function in vivo and showed it can rapidly mineralize naturally occurring organic phosphate independently of phosphate level, a process which is was found to be inhibited with other common enzymes such as PhoX and PhoA phosphatases, especially if there are already residual levels of phosphate around.
Dr. Ian Lidbury, from the University of Sheffield's Institute for Sustainable Food and Arthur Willis Environmental Research Centre, says that "the accumulation of phosphate can inhibit enzyme activity in the most common phosphatases, but PafA is unique in that its function does not suffer when phosphate accumulates."
"As there is a high occurrence and diversity of PafA in the environment, both on land and aquatic environments, this makes it a valuable overlooked resource for finding ways to help plants and animals more efficiently capture essential nutrients, and will be crucial to help us reducing our reliance on—and the damage caused by rapidly using up—the world's limited stocks of non-renewable chemical phosphorus fertilizers."
Click here to see more...