Manganese
Manganese is important for the proper function of many proteins and carbohydrates, fertility, growth and development, as it is necessary for the formation of bone and joint cartilage, and neurological function. Together with zinc, fulfilling the sow’s requirement for manganese is key to prevent lameness (supports both claws and skeleton).
Iron
Iron in combination with proteins and copper forms hemoglobin, essential for oxygen supply. Iron is needed continuously to provide hemoglobin for newly produced red blood cells.
An additional challenge for the highly prolific sow is the changing mineral requirements depending on phase of production. The first phase is the development of the foetus, and replenishing the body
reserves (body condition and bone mineralization). The second phase is the growth of the foetus, followed by the parturition, and colostrum and milk production, followed by a dry period and insemination. Successfully fulfilling the mineral requirements is important for both the reproductive success and performance of the offspring. However few studies have been performed to define the mineral requirements of highly prolific sows used today, which means that many sow feeds include high amounts of minerals to fulfill requirements.
Optimizing mineral supplementation
Absorption of minerals is limited because of antagonisms and interactions with feed components. Formation of insoluble, or too big to be absorbed, complexes with other components in the feed, limit availability of minerals for the animal. In addition, some minerals compete for the same transporters and metabolic processes for absorption, which limits the availability of these minerals or vitamins for the animal. Interactions between minerals are always present and still new interactions are found, which indicates the complexity of meeting mineral requirements (figure 1). It is certain however, that simply increasing the supplementation levels is often not the solution to meet mineral requirements.
Organic trace minerals
The negative effects of interaction with feed components and competition for absorption on bioavailability can be reduced by combining the mineral with an organic ligand. Inorganic mineral forms (e.g. sulphates) are very weakly bound and are therefore free to interact. Organically bound minerals are not reactive, which will prevent complex formation. Moreover, competition for absorption can be avoided partly by absorption using the pathway(s) of the ligand.
Source: Pancosma