“Global warming will lead to significantly increased temperatures on Earth, and plants are inevitably going to respond,” says Salk Professor Wolfgang Busch, senior author of the study, executive director of the Harnessing Plants Initiative, and Hess Chair in Plant Science. “The fact that higher temperatures deplete these important nutrients in plants is a real concern for the future of human and animal diets, and certainly something we want to account for as we work to design more resilient crops.”
Plant growth and development change based on environmental temperatures in a process known as thermomorphogenesis. To gain a deeper understanding of this process, Salk researchers looked at Arabidopsis thaliana, a small flowering plant in the mustard family. In early experiments, they noticed the above-ground part of the plant, called the shoot, grew longer when exposed to high heat. This led the Salk team to wonder how these temperatures affected the plant’s roots, and whether crop plants, like rice or soybean, might respond similarly.
To answer these questions, the researchers turned up the heat and watched Arabidopsis, rice, and soybean plants’ roots grow. Just as Arabidopsis shoot growth accelerated under high temperatures, its roots, as well as the rice and soybean roots, accelerated their growth. But there was one caveat: the rapid growth relied on abundant access to nitrogen and phosphorus in the soil.
Click here to see more...