Dinneny and his colleagues are studying Schrenkiella parvula to better understand how some plants cope with challenging conditions. Their findings could help scientists engineer crops that are able to grow in lower-quality soil and adapt to the stresses of climate change.
"With climate change, we can't expect the environment to stay the same," said Ying Sun, a postdoctoral researcher at the Salk Institute who earned her doctorate at Stanford and is a lead author on the paper. "Our crops are going to have to adapt to these rapidly changing conditions. If we can understand the mechanisms that plants use to tolerate stress, we can help them do it better and faster."
An unexpected response
Schrenkiella parvula is a member of the Brassicaceae family, which contains cabbage, broccoli, turnips, and other important food crops. In areas where climate change is expected to increase the duration and intensity of droughts, it would be valuable if these crops were able to weather or even thrive in those dry spells.
When plants encounter dry, salty, or cold conditions—all of which create water-related stress—they produce a hormone called abscisic acid, or ABA. This hormone activates specific genes, essentially telling the plant how to respond. The researchers examined how several plants in the Brassicaceae family, including Schrenkiella parvula, responded to ABA. While the other plants' growth slowed or stopped, the roots of Schrenkiella parvula grew significantly faster.
Schrenkiella parvula is closely related to the other plants in the study and has a very similar-sized genome, but ABA is activating different sections of its genetic code to create a completely different behavior.
Click here to see more...