The gene controls the formation of air spaces among living root tissues (termed root cortical aerenchyma). Replacing a large percentage of root cells with airspaces saves the plant a lot of energy which is otherwise required to feed all these root cells. This makes roots metabolically more efficient, enabling them to use the resources saved to build more roots and explore the soil more effectively and capture more water and nutrients.
This discovery could lead to the breeding of crops that can withstand drought and low-nitrogen soil conditions and ultimately ease global food insecurity, the researchers suggest.
"Identifying this gene and how it works will enable us to create more resilient crops that can withstand water and nutrient stress conditions being experienced as a result of climate change," says Rahul Bhosale, Assistant Professor in Crop Functional Genomics from the School of Biosciences and BBSRC Discovery Fellow.
The research team used powerful imaging tools developed in previous research at Penn State that rapidly measured cells in thousands of roots. An imaging technique called Laser Ablation Tomography was critical for this approach. This state-of-the-art approach is also now available at the University of Nottingham.
Hannah Schneider, Assistant Professor of Crop Physiology at Wageningen University & Research, Netherlands said, "We first performed the field experiments that went into this study starting in 2010, growing more than 500 lines of corn at sites in Pennsylvania, Arizona, Wisconsin and South Africa," she said. "I worked at all those locations. We saw convincing evidence that we had located a gene associated with root cortical aerenchyma."
This research revealed that mutant corn lines lacking the bHLH121 gene showed reduced root air space formation. In contrast, overexpressing bHLH121 caused more air space formation.
Characterization of these lines under suboptimal water and nitrogen availability in multiple locations revealed that the bHLH121 gene is required for root air space formation and provides a new tool for plant breeders to select varieties with improved soil exploration, and thus yield, under suboptimal conditions.
Click here to see more...