Biologist Xinnian Dong says her "best Christmas gift ever" arrived in the form of a phone call. The call was from her longtime friend and collaborator at Duke University, Pei Zhou, who rang with long-awaited news: they had finally solved the structure of the plant protein NPR1.
Dong, a Howard Hughes Medical Institute Investigator, discovered NPR1 twenty-five years ago. The protein, with a name inspired by Dong's love of National Public Radio, plays a key role in protecting flowering plants against a broad spectrum of pathogens. Today, NPR1 is widely recognized as a master regulator that controls more than 2,000 genes involved in plant immunity.
Despite its outsized role in plant defense, NPR1's structure has remained elusive—much to the consternation of researchers in the field. Without detailed structure data, scientists have struggled to understand how the protein governs plant protection, Zhou says. "What's really crucial and missing is an explanation of how NPR1 works on a molecular level."
In new work that unveils how NPR1 looks and acts, Zhou and Dong's teams bridge that gap—a find that could change the face of plant breeding. The two groups report the structure of NPR1 from the common lab plant Arabidopsis thaliana on May 11, 2022, in the journal Nature.
For Dong, the paper marks the end of a decades-long quest. "When I first saw the structure of NPR1, it took my breath away," she says. "It looked like a gliding bird, just beautiful."
Plants that are fighting fit
For as long as humans have cultivated crops, they have had to fight off the numerous pests and pathogens that stymie plant growth. The water mold Phytophthora infestans, for instance, is one of the most notorious baddies—responsible for the Irish Potato Famine that resulted in a million deaths and two million refugees. "It's a huge struggle that has shaped our world," says Dong.
Click here to see more...