The new study, published in the Soil Science Society of America Journal, compared corn residue decomposition in high- and low-fertility, with and without nitrogen fertilizers. The results came as a surprise.
"Corn residue decomposed significantly faster in poor, low-nitrogen-supplying soils compared to a fertile soil, especially when we added nitrogen, which stimulated microbial activity. It was a surprise, based on our earlier findings that showed high-nitrogen corn residue broke down faster," said study author Tanjila Jesmin, doctoral researcher in the Department of Natural Resources and Environmental Sciences (NRES), part of the College of Agricultural, Consumer and Environmental Sciences (ACES) at U of I.
Richard Mulvaney, professor in NRES and study co-author, explained poor soils have fewer aggregate particles, small craggy nuggets that house soil microbes and give soil its structure. With fewer aggregates, free-wheeling microbes roam loose in the soil, encountering carbon more frequently, gobbling it up, and creating carbon dioxide as a byproduct.
"In a poor soil with less aggregate stability, microbes have greater access to the residues and the carbon. And when there's a high nitrogen supply, they also have a high demand for carbon as an energy source. Eventually, their demand may exceed the carbon supply in residues, which may cause them to attack organic matter in the soil," Mulvaney said. "The microbes just keep burning it and evolving more carbon dioxide. It's a downward spiral."