By Jerad Jaborek
Protein is one of the main macronutrients needed by cattle to survive and grow. As you may know, cattle are ruminants, and therefore have a four-compartment stomach that consists of the rumen, reticulum, omasum, and abomasum. The largest stomach compartment in ruminants is the rumen, which contains a vast diversity of microbes. In the rumen, ingested feedstuffs undergo microbial fermentation and breakdown allowing for nutrient absorption. The rumen microbes also use the dietary carbohydrates and protein consumed by cattle to maintain, grow, and reproduce themselves. As a result, the passage of microbes from the rumen to the lower gastrointestinal tract can provide cattle with two-thirds to three quarters of their protein requirements. We can think about the metabolizable protein requirements of cattle as the sum of rumen degradable protein (RDP), microbial protein (MCP), rumen undegradable protein (RUP), and small contributions from endogenous protein. Rumen degradable protein consists of dietary protein and amino acids, and non-protein nitrogen (NPN), such as urea, that are used by the rumen microbes to reproduce or replicate. The microbes themselves provide the small intestine with MCP, in addition to dietary RUP that is not degraded by the rumen microbes, endogenous protein from sloughed cells within the digestive tract, and digestive enzymes reaching the small intestine.
Not all protein sources are the same because they are comprised of different concentrations of amino acids. Amino acids are the building blocks of protein, and the animal requires a certain concentration of each amino acid to meet its growth requirement. Therefore, if one amino acid is deficient or limiting, it can limit growth performance to a level that is less than when all the amino acids are supplied at their optimal concentration. Protein sources vary in digestibility and composition, but factors such diet forage to concentrate ratio, rumen pH, and passage rate of digesta out of the rumen can influence the site of protein digestion, thus making it very complicated to predict RDP, MCP, and RUP requirements and supply.
For growing and finishing cattle, the metabolizable protein requirements are quite different and are largely influenced by dry matter feed intake and muscle (i.e., protein) gain. Therefore, smaller, and typically younger cattle (less than 660 lb) are depositing more protein for lean muscle tissue than fat compared with larger, older, finishing cattle (greater than 660 lb). Additionally, smaller calves are capable of consuming 3.0 to 3.5% of their body weight in dry matter feed daily compared with about 2.0% for a mature finished steer or heifer. A greater feed and energy intake will result in a larger population of rumen microbes that can contribute to MCP supply in the small intestine. Considering these facts, the ratio of RDP to RUP needed in the diet of cattle increases as the cattle achieve a greater weight, where a growing steer calf (<660 lb) may require 65 to 85% RUP for a 2.2 to 3.3 lb/day gain, while a finishing steer (>660 lb) may only require 35 to 50% RUP for the same rate of gain.