"This would confer an advantage in competition with other microorganisms that also inhabit the intestinal tract," said Julia Cabrera, first author of the article.
"Salmonella's genetic apparatus is sufficient to enable it to change behavior in response to not only hosts [commercial poultry] but also other bacteria that compete with it in the same environment. When these two genes were deleted, it found other survival mechanisms and became even more pathogenic to the birds," said Mauro Saraiva, second author of the article and responsible for leading the study during a postdoctoral fellowship at FCAV-UNESP.
The findings reinforce the importance of taking animal health measures as soon as chicks are hatched and until slaughter, as well as care during meat transportation and conservation. A vaccine to prevent intestinal colonization of poultry by strains of Salmonella responsible for food-borne outbreaks of human salmonellosis lies beyond the horizon for now.
The study is part of a project led by Angelo Berchieri Junior, a professor at FCAV-UNESP.
According to Berchieri Junior, few food-borne human infections have been detected in Brazil, but consumers should not neglect proper food conservation and hygiene. "The Salmonella serotypes known to cause food-borne diseases don't always make a person sick. Although there are other important routes for these bacteria to be introduced into poultry farms, the greatest danger occurs when very young chicks are exposed, as their immune system isn't fully formed," he said.
In these cases, fecal excretion lasts longer and causes more extensive contamination of the chicken shed. As a result, more infected birds are transported to the slaughterhouse. Most contamination of carcasses (chickens ready for sale) occurs during this stage.
Infection
In the study, laying hens and chicks of various ages were first infected with the serotypes of Salmonella enterica most frequently found in Brazil, Enteritidis and Typhimurium, using mutant strains with ttrA and pduA inactivated in the laboratory. The infections were compared with those caused by wild-type strains of the same serotypes, in which all genes were functional.
The cellular immune response was measured using immunochemistry methods, which are based on antigen-antibody reactions and staining of compounds formed in infected tissue. The larger the area stained, the more exacerbated the organism's cellular response to infection. The researchers analyzed different parts of the intestinal tract (cecal tonsils, cecum and ileum), as well as the liver.
Click here to see more...