To analyze the impacts of sustainable groundwater use for irrigated corn, soybean, and winter wheat, researchers used a crop model to simulate irrigated agriculture from 2008 to 2012. The crop model uses information about daily weather, soil properties, farm management, and crop varieties, and was compared to survey data from the U.S. Department of Agriculture to confirm its accuracy.
Crop production was simulated under four different groundwater use scenarios, ranging from most optimistic to pessimistic. The most optimistic scenario assumes that the maximum amount of recharge can be used for irrigation. The less optimistic scenarios assume that only a fraction of the recharge goes into the aquifer and just that restricted amount of water can be used for irrigation. The less optimistic scenarios account for uncertainty in groundwater availability as well as preserving some water to maintain healthy ecosystems. The four groundwater use scenarios used were 100%, 75%, 50%, and 25%.
Under the most optimistic sustainable groundwater use scenario, U.S. irrigated production of corn, soybean and winter wheat is reduced by 20%, 6% and 25%, respectively. Under the most pessimistic scenario, corn, soybean and winter wheat production is reduced by 45%, 37% and 36%, respectively.
“Our findings underscore how corn, soybean, and winter wheat production could be affected if we chose to stop depleting aquifers across the United States,” says co-lead author Jonathan Winter, an associate professor of geography and principal investigator of the Applied Hydroclimatology Group. “However, future precipitation, which affects groundwater resources, is difficult to predict, and improved irrigation technology, more water-efficient crops, and better agricultural water management could reduce the production losses from a transition to sustainable groundwater use.”
The findings show that Nebraska, Kansas, and Texas, which rely on groundwater from the High Plains Aquifer (also known as the Ogallala Aquifer) to grow corn, soybeans, and winter wheat, would experience some of the greatest production losses as a result of sustainable groundwater use. This region is particularly vulnerable due to its lack of rainfall, which limits rain-fed agriculture and groundwater recharge. Prior research found that the High Plains extracts three times as much groundwater as its aquifer’s recharge rate.
In contrast, the Mississippi Valley, a significant corn and soybean region, would experience relatively few production losses, as groundwater extraction is typically less than recharge over the region. The Midwest would also experience minimal corn and soybean production losses because the region is humid and relies mainly on rain-fed, rather than irrigated, agriculture.
“Sustainable groundwater use is critical to maintaining irrigated agricultural production, especially in a global food system that is already taxed by climate change, population growth, and shifting dietary demands,” says co-lead author Jose R. Lopez, a former postdoctoral researcher in geography at Dartmouth. “We need to expand the implementation of water conservation strategies and technologies we have now and develop more tools that can stabilize the nation’s groundwater supply while preserving crop yields and farmer livelihoods.”
Source : dartmouth.edu