In colder-than-normal pre-growing seasons, soil inorganic nitrogen—and end-of-season yield—declined due to reduced soil microbial activity and enhanced leaching. But in this case, adding extra fertilizer in spring may not do much.
"The effects of cold pre-growing season temperatures on yield cannot be eliminated by adding additional fertilizer," Li says. "That's because the temperature not only affects the nitrogen content in soil, but also seems to limit early growth in ways that affect yield potential, even if weather returns to normal later."
Li used an advanced agroecosystem model, known as ecosys, to understand how temperature and precipitation in the pre-growing season impacted soil inorganic nitrogen content and yield. The research team chose the ecosys model due to its advanced ability to simulate carbon, water, and nutrient cycles. The model uses first principles and sophisticated algorithms to simulate management practices and their effects.
"The ecosys model has been extensively used for a lot of different cases for agriculture, and this study further demonstrates that ecosys can perform well for simulating nitrogen cycles. The validation data set we used came from decades of nitrogen trials conducted by our collaborators at Illinois and other Midwestern states. We found the model actually can reproduce these patterns, not only the Illinois data, but patterns from the broader Midwest," says Kaiyu Guan, associate professor in NRES, founding director of the Agroecosystem Sustainability Center at Illinois, and the principal investigator of this study.
"We have done a very comprehensive validation effort; this means a lot because you want to trust a model that has been validated, that is robust. We believe the findings in this work provide some justification for the consideration of pre-growing season weather in determining the spring nitrogen fertilizer application," Guan adds. "One of our future studies will investigate these factors in decision making tools for farmers."
Click here to see more...