How Much Spring Nitrogen to Apply? Pre-Planting Weather May Provide a Clue

How Much Spring Nitrogen to Apply? Pre-Planting Weather May Provide a Clue
Jun 21, 2022

Subscribe to our Newsletters

With the rising cost of nitrogen fertilizer and its impacts on air and water quality, University of Illinois researchers want to help farmers make more informed fertilizer rate decisions. Their latest modeling effort aims to do that by examining the role of pre-growing season weather on soil nitrogen dynamics and end-of-season corn yield.

"When farmers plant corn in spring, they already know what happened during the pre-growing season, from the previous fall to the spring. Unlike the upcoming growing season, which we can't reliably forecast, we can use pre-growing season information to guide farmers to adjust their  application," says Ziyi Li, doctoral researcher in the Department of Natural Resources and Environmental Sciences (NRES) at Illinois and lead author on the new study published in Field Crops Research.

Li's model found wetter pre-growing seasons reduced  through leaching. With no added fertilizer in spring, a pre-season uptick in precipitation led to yield reductions between 5 and 14%. But with spring fertilizer applied at about 150 lb  per acre, the 2018 average rate in Illinois, heavy pre-season precipitation still dropped yield by 1-3%.

"In our analysis, we found applying more fertilizer can mitigate and even eliminate the yield loss induced by excess pre-growing-season precipitation. Based on our model, if an Illinois farmer applies 150 lb of nitrogen per acre, the 1-3% yield loss can be prevented by adding about 16 lb more nitrogen," Li says.

In colder-than-normal pre-growing seasons, soil inorganic nitrogen—and end-of-season yield—declined due to reduced soil microbial activity and enhanced leaching. But in this case, adding extra fertilizer in spring may not do much.

"The effects of cold pre-growing season temperatures on yield cannot be eliminated by adding additional fertilizer," Li says. "That's because the temperature not only affects the nitrogen content in soil, but also seems to limit early growth in ways that affect yield potential, even if weather returns to normal later."

Li used an advanced agroecosystem model, known as ecosys, to understand how temperature and precipitation in the pre-growing season impacted soil inorganic nitrogen content and yield. The research team chose the ecosys model due to its advanced ability to simulate carbon, water, and nutrient cycles. The model uses first principles and sophisticated algorithms to simulate management practices and their effects.

"The ecosys model has been extensively used for a lot of different cases for agriculture, and this study further demonstrates that ecosys can perform well for simulating nitrogen cycles. The validation data set we used came from decades of nitrogen trials conducted by our collaborators at Illinois and other Midwestern states. We found the model actually can reproduce these patterns, not only the Illinois data, but patterns from the broader Midwest," says Kaiyu Guan, associate professor in NRES, founding director of the Agroecosystem Sustainability Center at Illinois, and the principal investigator of this study.

"We have done a very comprehensive validation effort; this means a lot because you want to trust a model that has been validated, that is robust. We believe the findings in this work provide some justification for the consideration of pre-growing  weather in determining the spring nitrogen fertilizer application," Guan adds. "One of our future studies will investigate these factors in decision making tools for farmers."

Click here to see more...

Trending Video

Pipe Planner: A Closer Look

Video: Pipe Planner: A Closer Look

Today’s update is from Dr. Drew Gholson, Extension Irrigation Specialist and Coordinator for the National Center for Alluvial Aquifer Research for the Mississippi State University Extension Service.