ITHACA, N.Y. – Climate change is creating increasingly unstable farming environments, leading to unpredictable yields and quality. Crop breeding programs aim to develop crops that can thrive despite climate instability; however, breeding programs face their own challenges in predicting how the climate will change and how crops will respond. One specific challenge to breeding programs is the lack of information about how plant genomes and growing conditions interact and how that interaction impacts agronomic traits such as yield. The Foundation for Food & Agriculture Research (FFAR) is providing a $796,878 Seeding Solutions grant to Cornell University to study how different plant genomes respond to environment conditions throughout the entire growing season, with the goal of improving crops’ climate resiliency. BASF, Limagrain and Virginia Crop Improvement Association are providing matching funds for a total $1,593,756 investment.
“Agricultural disruptions from climate change are already underway, and while we can't predict exactly what environmental stressors plants will face next, we can pinpoint genes that can resist environmental stress. Our best option is to breed crop varieties to include genes that help plants withstand droughts, floods and other extreme events we can’t yet predict,” said Dr. Jeffrey Rosichan, director of FFAR’s Crops of the Future Collaborative. “This research is shortening the development of improved crop varieties to rapidly equip growers with plants that can withstand whatever climate change throws at them.”
To develop climate resilient crops, breeders must first understand how traits such as yield vary across environments and whether genetic variations can influence a crop’s sensitivity to climate conditions. With this knowledge, breeders and growers can use genomic data to predict crops’ resiliency and select plants for breeding that are best suited to expected and unexpected future climate conditions.
Cornell researchers, led by Dr. Kelly Robbins, are planting diverse varieties of maize and alfalfa crops with known differences in growth patterns in two contrasting growth environments to determine the locations’ effects on crop performance over time. Partnering researchers at Cornell, Virginia Tech, New Mexico State University, BASF and Limagrain will focus on alfalfa, maize, wheat, soybean, cotton and canola due to the economic importance of these crops for food, fiber and feed.