Bruno Guillotin, a postdoctoral associate in NYU's Department of Biology and the study's first author. "While these three crops are similar, how they differ from each other is important because they have traits that we may want to transfer from one to the other, such as drought tolerance."
The researchers conducted single-cell mRNA profiling of the roots of corn, sorghum, and millet, dissecting the roots to look at the cells individually and observing precisely where genes are expressed in a particular cell. They then compared the same specialized cells across the three crops.
In examining how cells have evolved and diverged in the different species, the researchers identified several trends that point to "tinkering"—or the rearrangement of existing elements—of cells over time. First, they observed that cells often trade gene expression modules, or groups of 10 or 50 genes with coordinated functions, between cell types over evolution.
"This gene module swapping has been shown in animal systems, but the data we generated is the first time it's been illustrated on a large level in plants," added Birnbaum.
This swapping of modules was demonstrated in a discovery about root slime—the gooey substance filled with nutrients that roots emit into the soil. Slime is useful for lubricating the soil so roots can pass through and can attract beneficial bacteria that protect the plant or provide hard-to-get nutrients.
Click here to see more...