"In the Midwest, our soils are healthy and resilient, but we shouldn't overestimate them. A soil under unsustainable practices for too long might reach an irreversible threshold," Kim says.
In his first study, published in Agronomy, Kim characterized shifts in microbial communities at the genus level, a far higher taxonomic resolution than previous studies. The more detailed view of the microbial community revealed indicator genera representing critical aspects of soil health and function.
"Most studies have looked at the microbes very generally, at the phylum level. But even a single phylum may have incredibly vast microbial diversity. Analysis at such levels could not provide insights with enough details, so I looked deeper," Kim says. "Genus-level responses or stasis can tell us how a soil and its microbial community are responding to soil management practices."
For example, he found both long-term fertilization and cover crops favored microbes that could increase the risk of nitrous oxide emissions. Meanwhile, cover crops also enhanced soil biodiversity, as microbes with more diverse niches and functions were associated with this practice. Details like these—especially that cover crops can have both positive and negative effects on soil microbes—may have been missed with the broader microbial analyses of the past.
In a second study, published in Frontiers in Microbiology, Kim focused on nitrogen cycling by identifying microbial functional genes in soil, rather than characterizing microbes themselves.
"Applying a lot of nitrogen fertilizers definitely disrupted nitrogen cycling communities," Kim says. "Ammonia-oxidizing archaea decreased significantly with fertilization, but bacteria were not that responsive. Within denitrification communities, those harboring the nitrite-reducing nirK gene were not as sensitive, while others with the nirS gene were negatively affected."
Kim found two years of cover crops had no impact on microbes' rates of potential nitrification and denitrification, indirect indicators of nitrate leaching and nitrous oxide emission.
"If a system is exposed to disruption of nitrogen-cycling microbial communities long enough, it may develop resistance to conservation practices," Kim says.
Click here to see more...