"We hope to develop highly effective vaccines that not only prevent abortions, but also reduce or shorten infections after exposure," he said. "Any vaccine for wildlife will need to be in a delivery platform that can be effectively given and will also need to be evaluated for environmental safety."
When infected wildlife transmit the disease to domestic livestock, the risk of female members of the herd experiencing abortions increases, which can lead to additional exposures. The disease can also cause sterility in bulls. In most cases, handlers have to depopulate the entire herd, causing major economic hardship.
There is also a risk of transmitting brucellosis to humans. Many infected livestock, including sheep and goats, can shed the bacteria in their milk, which can cause clinical disease in humans if they consume unpasteurized milk or associated products. When humans are infected, brucellosis can be a chronic, debilitating disease that does not have distinct symptoms, leading to difficulties in diagnosis.
"It's a veterinary issue, but it's also a public health issue," Olsen said. "Our research data has suggested that we need to tailor vaccines to specific species due to dramatic differences in immunologic responses between species."
He and his team are collaborating with regulatory officials in areas around Yellowstone National Park, where wildlife - mainly elk but potentially bison as well - may come into contact with domestic livestock herds. They developed an effective two-dose vaccine strategy for immunizing bison, but administering two separate inoculations to free ranging wild bison is a challenge. The wild elk population in this area is much larger than bison, and because of their unique immunologic responses, requires a completely different vaccination strategy.
Click here to see more...