By Diana Horvath
In the case of SARS-Cov-2, virus particles highjack human cells and trick them into becoming virus factories, establishing an infection (leading to Coronavirus Disease 2019, COVID-19) before the human host mounts an immune response.
Plants are also sickened by viruses and other pathogens, with fungi and oomycetes (also known as water molds) being the most damaging.
When attacked by pathogens, the host usually detects the intrusion and activates its defenses to fight off the invaders. In people, a cornerstone of this system of immunity are antibodies that can adapt to identify new pathogen threats and mark them so other parts of the immune system can attack.
Sometimes a person’s immune reaction is not quick or strong enough after becoming infected, and they get sick and may die. In some cases, scientists have developed drug therapies that can bolster the immune response and help the host win the battle—like the anti-retroviral cocktail (a mix of anti-viral drugs) used to fight HIV. This approach effectively and durably prevents the virus from reproducing itself by three distinct mechanisms, making it far less likely that the virus that can overcome the drugs.
If a plant can’t recognize a predator it might not fight back
Plants don’t make antibodies but do have an immune system of pathogen detectors that activate strong cellular defenses against known threats. But there are new and existing pathogens for which they have no detector, and they don’t have the same adaptive immune system that people have. If a plant can’t recognize a predator, it may not know it’s in danger—and might not fight back quickly or strongly enough, if at all.
But scientists can bolster plant immunity too. Scientists can identify the detectors that recognize pathogens—also known as receptors or resistance proteins—and combine them to trigger robust protection from disease, much like a vaccination.
And there are now multiple tools to find more plant pathogen resistance proteins—by looking in nature within the genomes of crops like corn, wheat, or potatoes and their domesticated and wild relatives. Scientists can then introduce the genes for these resistance proteins into a crop to protect it from its worst unmanaged diseases. Combining multiple mechanisms like a therapeutic cocktail, this approach supplements the plant’s own immune system for long-lasting protection.
A new safe and effective pathway to protect our food crops
The 2Blades Foundation and its collaborators have shown that providing additional resistance proteins to plants leads to strong reductions in the amount of pathogen in the plant, without using any chemical pesticides.
Because these receptors are introduced directly into a host genome, the intervention is like a vaccination and the crop is potentially protected from that disease for the rest of its life. Yet it is better than a vaccination since this protection is passed on to future generations of crops.
Pathogens do evolve and change, but by studying the races of pathogens in existence and combining multiple receptors together, it is possible to build resistance that can last through many generations of crops over many years.
Still fighting the same wheat diseases that the Romans battled