Typically, only fast-growth hardwood species were initially evaluated as a biomass feedstock source. However, care must be used in matching these species to specific sites in order to maximize potential productivity and minimize problems associated with a variety of diseases. In addition, the number of trees per acre (800 to 12,000) for dedicated hardwood energy plantations will exceed any type of previous planting.
Hardwood species, including a variety of species and hybrids of poplars, willows, and eucalyptus, are currently being more thoroughly evaluated through breeding and clonal testing for survival, growth, and disease resistance. These species and hybrids share a number of desirable traits that include ease of producing clones, rapid early growth rates, and ability to regenerate from stumps of harvested trees. However, these species and hybrids also have problems associated with adaptability to various site types, disease susceptibility, and poor resistance to a number of chemicals needed to control herbaceous and vine competition. For example, eucalyptus would be grown only on marginal agricultural upland soils, whereas black willow would be grown on heavy clay soils that exhibit poor drainage and are considered marginal agricultural sites.
Fast-growth hardwoods, in general, can only tolerate a pre-emergent chemical applied during the early portion of the growing season. The lack of herbaceous competition control results in significantly reduced tree growth. Herbaceous and vine competition control is a major cost associated with SRWCs. Most sites have a large weed seedbed that, left unchecked, can greatly limit growth or even result in plantation failure during the first year. Mechanical cultivation has been used extensively in the past, but this is limited by cost due to the number of entries needed to maintain a nearly weed-free environment. Chemical weed control is a more desirable alternative, but few chemicals are specifically labeled for hardwoods (Robison et al. 2006). Continued exploration of a variety of chemicals will be needed to provide safe labeled herbicides that will reduce weed and vine competition without harming the environment. Robison et al. (2006) stated that timely herbicide applications could result in clean, fast-growing short rotation hardwood plantations at a lower cost than mechanical cultivation. One key step is to identify the woody or herbaceous competition and eliminate it through effective chemical site preparation.
Currently, there is little information concerning the optimal spacing for bioenergy plantations of various hardwood species. Most bioenergy plantations are currently planted at various density levels depending on the geographic area and the expected rotation length for the desired product. The key factor—outside of the actual growth and development of the species—is how effectively these species can be grown at very close spacings, while factoring in herbaceous and vine control and the length of time to harvest. The grower will also have to consider not only how the material will be used, but how it will be harvested. Certainly, the ability of the species to effectively coppice following the first rotation would be a strong advantage because it would reduce planting and establishment costs for subsequent rotations. Those factors that would lead to economic gains from dedicated bioenergy plantations follow:
- Incorporate chemical site preparation and herbaceous weed control where needed to reduce first-year competition from herbaceous perennial weeds and vines.
- Use genetically superior clonal planting stock that was selected to increase yields in biomass production and can be easily reproduced.
- Employ optimal spacing for species and type of biomass desired.
- Develop and use chemicals that can be sprayed over the top of actively growing trees to control herbaceous and vine competition.
- Develop nutrient amendment prescriptions necessary to ensure rapid growth.
- Development of equipment that can efficiently and effectively harvest small-diameter material at close spacing.
These methods and factors can be thought of as a wish list that would make the use of hardwoods in a SRWC system a viable alternative for biomass production. These methods and factors would also require commitments by various industries, such as chemical and machinery companies, to produce the products necessary to dramatically lower costs of establishment and harvesting.
In the past, pine has not been considered a bioenergy crop because of its slow early growth, difficulty in cloning, and lack of coppice regeneration. However, genetically improved pine can be planted over a very wide geographic area, and a number of chemicals can be sprayed to maintain herbaceous competition control. This makes pine one of the cheaper biomass options. In addition, pine plantations have been sustainably grown in the southern U.S. for nearly 90 years and cover more than 30 million acres (McKeand et al. 2006). It is no doubt that these plantations will be among the primary biomass feedstock sources needed to meet the future productivity of bioenergy and biofuels. Thinnings at various ages in traditional pine plantations can produce a substantial tonnage of high-quality biomass feedstock. These thinnings also reduce stand density for the remaining trees to be harvested at a later date for added-value products (e.g., sawtimber, plywood, and poles).
Summary
Short rotation woody crop systems could be a major source of renewable dedicated woody feedstock for bioenergy and biofuel products. This intensive system requires the use of technology in areas such as genetics and harvesting. Forest residues, woody urban waste, and weather-related salvage wood can provide specific quantities of biomass to bioenergy/biofuel systems that do not place limitations on the feedstock quality. However, only an intensive system, such as an SRWC, can provide high-quality feedstock to those more demanding users. In the future, these types of systems could reduce the demand on native forest resources, while providing greater diversity and requiring a less-intensive management strategy.
Source:msstate.edu