When Vimal Selvaraj’s uncle first imported Holstein semen to start his dairy farm in India in the early 1990s, he was hailed as a revolutionary on the cutting edge of agriculture. His first generation of cattle crosses between Holsteins and Sahiwals, a native Indian breed, seemed to carry the best traits of both: the Holsteins’ high milk production, and the Sahiwals’ disease resistance and extreme weather tolerance.
But after a few generations, as the cattle carried more and more Holstein genetics, cows became sicker and sicker. They suffered from mastitis, parasitic infestations and other diseases that the Sahiwal had tolerated. Just 10 years after that first Holstein cross, the farm went bankrupt.
“This extreme focus on milk-production traits has had beneficial impacts, but it has had collateral damage as well,” said Selvaraj, associate professor of animal science at Cornell University. “Animal production is driven by industry, and industry is driven by profit. Many people are thinking two to three years ahead, not 20 years ahead.”
Today, Selvaraj is working to preserve the genetic diversity of fast-disappearing native cattle breeds via gene banking, and his lab has made a breakthrough that will enable long-term storage and reproduction of cattle stem cells – cells that could be used in the future to clone breeds that have gone extinct, or that have been so heavily crossed with other breeds that they’ve lost their strongest traits.