Maize, or corn, is cultivated globally, as food, feedstock, and a biofuel source, and is one of the most widely produced crops alongside wheat and rice. Today, the importance of maize as a grain is unrivaled and methods to increase crop yields, reduce farming costs, and ensure sustainable agriculture are critical.
Increases in maize yield have been shown to be linked to nitrogen fertilizer use. But it has also been seen that their uptake of nitrogen fertilizer from the soil is inefficient, at only about 40–65%. Understanding what causes this inefficiency is important for improving crop growth economically and sustainably (less fertilizer use). However, traditional techniques for tissue dissection and analysis are labor-intensive and lack precision, making it difficult for scientists to obtain clear insights into cell types and characteristics.
Recently, a novel technique called single cell RNA-sequencing (scRNA-seq) has changed the game in cellular-level tissue analysis. A versatile technique, it has been applied to samples of human tissue, mice, rice, peanut, and other plants, revealing key gene expression patterns and cell developmental pathways.
Now, in a collaboration between the Institute of Nanfan & Seed Industry, Guangdong Academy of Science, China, and College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, China, scientists have used this tool to characterize maize roots. "The application of scRNA-seq to identify cell type-specific genes responsible for nitrogen uptake and processing brings new hope for optimizing root nutrient uptake ability in crops including maize," says Prof. Yongwen Qi, who led the collaboration.