In looking at future forecasts of droughts over the course of the remainder of the century, the researchers believe the new technique can help them to understand "flash drought" events that have a quick onset period that could be as short as few weeks. "Flash droughts, as their name implies, happen really quickly," Kotamarthi said. "While conventional droughts are related to a prolonged lack of precipitation, flash droughts occur because of high temperatures and extremely high evaporation rates."
Unlike hurricanes, which have a rigorous classification scale, scientists use various methodologies to classify droughts. These range from reports from farmers to noted precipitation deficits to assess which regions were experiencing a drought. In some regions of the country that typically experience fairly low precipitation to begin with, such as the Southwestern U.S., lack of precipitation may not be sufficient to adequately represent the impact of a drought, Kotamarthi said.
Instead of using precipitation deficit to identify drought, the researchers turned to a new measure called vapor pressure deficit, or VPD. VPD is calculated based on a combination of temperature and relative humidity and consists of the difference between how much water vapor the air can hold when saturated and the total amount of water vapor available. "An extended period of higher-than-average VPD can mean that a drought is occurring," said Argonne environmental scientist Brandi Gamelin. "We're looking at drought differently by bypassing precipitation altogether—to primarily look at the effect of temperature and future temperature changes on drought."
Because the amount of water that air can hold is dependent upon its temperature, hotter air typically has a higher VPD than colder air. "Cold air retains less moisture than hot air, so the warmer the air temperature, the more water vapor it can hold, which can draw moisture out of the surface, drying it out," Gamelin said.
Click here to see more...