Figuring out how plants make these adjustments could improve our understanding of how they perform in the field and help develop new plants that can withstand rising temperatures from climate change.
Kirchhoff and his collaborators' findings could have broad implications and benefits in years to come, as their model is integrated with others to learn more about how exactly photosynthesis works.
Energy conversion from sunlight and energy storage happens in specialized thylakoid membranes in chloroplasts in leaves.
"It functions like a battery," Kirchhoff said. "In leaves, plants pump protons from one side of the thylakoid membrane to the other generating a gradient of positive and negative charges."
To regulate this energy storage, ion channels control the fluctuation in amount of energy available, he said.
Understanding this complex process could be the key to feeding people around the world on a warming planet.
"Photosynthesis is very powerful," Kirchhoff said. "If it's not controlled, it can produce too much energy, which creates dangerous molecules that can kill a plant. Engineering plants with better photosynthetic control would mean those plants could survive in sunnier, warmer conditions."
Click here to see more...