Glucose and xylose are the two most abundant sugars obtained from the breakdown of plant biomass such as agricultural wastes. The team was trying to overcome a common problem that occurs when using yeast to convert these plant sugars into ethanol. In the wild, the yeast strain of interest, Saccharomyces cerevisiae, prefers glucose and lacks the ability to metabolize xylose. Other scientists have used genetic engineering to alter the yeast so that it also consumes xylose, but these engineered strains still prefer glucose, reducing their overall efficiency in ethanol production.
Some scientists have pursued the idea that communities of microbes, each with its own special function, can operate more efficiently than a single, highly engineered strain.
"My group is dedicated to the design, analysis and engineering of synthetic microbial communities. Jin's lab specializes in yeast metabolic engineering and biofuel production," Lu said.
"Our complementary expertise enabled us to test whether a division-of-labor approach among yeast might work well in biofuels production."
The researchers conducted a series of experiments testing the use of their two specialist yeast strains. They altered the order in which the different strains were added to the sugar mixture and the timing of each addition.
"We also investigated the ratios at which the two populations were mixed to determine their effects on the rapid and efficient production of cellulosic ethanol," Jin said.
The team also developed a mathematical model that accurately predicts their yeasts' performance and ethanol yields.
"We used the data from the experiments to train our mathematical model so that it captures the characteristic ecosystem behaviors," Lu said. "The model was then used to predict optimal fermentation conditions, which were later validated by corresponding experiments."
The researchers discovered that adding the xylose-fermenting yeast specialist to the mixture first, followed 14 to 29 hours later by the glucose specialist, dramatically boosted ethanol production, more than doubling the yield.
Click here to see more...