The researchers found that about one-third of all farming occurs in areas that were considered highest conservation priority. One pattern that emerged was that some staple commodities, such as beef, rice, and soybeans, tended to be produced in high conservation priority areas. At the same time, other substitutes, such as barley and wheat, were predominantly sourced from lower risk areas.
"A surprising takeaway for me was how much the impact of the same crop can vary based on where it is sourced from," said Daniel Moran, a senior scientist at the Climate and Environmental Institute NILU and a research professor at the Norwegian University of Science and Technology's (NTNU) Industrial Ecology Program who was also a co-author of the study.
Effects of climate change
The changing climate is expected to alter both cropping patterns and available habitats. The research team used their model to look at different scenarios to see how the interaction between wild biodiversity and farming would change under predicted 2070 temperatures.
Species are likely to colonize new territories in a warmer world, which could result in the emergence of new high conservation priority areas or mitigate conflicts in current conservation hotspots.
While the researchers did not produce a detailed map forecasting future conflicts between agriculture and conservation, the paper's supporting information offers some estimates of future competition under a range of scenarios.
"Our spatial approach is a valuable complementary method with other standard techniques to evaluate the impact agriculture has on biodiversity. The knowledge gained from our study should help reduce the trade-off many nations associate with agriculture production and environmental protection," said Kanemoto. "It fills in a big missing piece in the footprint of food."
Click here to see more...