Kangaroo Fecal Microbes Could Reduce Methane From Cows

Kangaroo Fecal Microbes Could Reduce Methane From Cows
Feb 15, 2023

Baby kangaroo feces might help provide an unlikely solution to the environmental problem of cow-produced methane. A microbial culture developed from the kangaroo feces inhibited methane production in a cow stomach simulator in a Washington State University study.

After researchers added the baby kangaroo culture and a known  inhibitor to the simulated stomach, it produced  instead of methane. Unlike methane, which cattle discard as flatulence, acetic acid has benefits for cows as it aids muscle growth. The researchers published their work in the journal Biocatalysis and Agricultural Biotechnology.

"Methane emissions from cows are a major contributor to , and at the same time, people like to eat red meat," said Birgitte Ahring, corresponding author on the paper and a professor in with the Bioproducts, Sciences and Engineering Laboratory at the WSU Tri-Cities campus. "We have to find a way to mitigate this problem."

Reducing the burps and farts of  from cattle is no laughing matter. Methane is the second largest greenhouse gas contributor and is about 30 times more potent at heating up the atmosphere than carbon dioxide. More than half of the methane released to the atmosphere is thought to come from the , and ruminant animals, such as cattle and goats, are the most significant contributors. Furthermore, the process of producing methane requires as much as 10% of the animal's energy.

Researchers have tried changing cows' diets as well as giving them chemical inhibitors to stop methane production, but the methane-producing bacteria soon become resistant to the chemicals. They also have tried to develop vaccines, but a cow's microbiome depends on where it's eating, and there are far too many varieties of the methane-producing bacteria worldwide. The interventions can also negatively affect the animals' .

The WSU researchers study fermentation and anaerobic processes and had previously designed an artificial rumen, the largest stomach compartment found in ruminant animals, to simulate cow digestion. With many enzymes that are able to break down , rumens have "amazing abilities," said Ahring, who is also a professor in the Gene and Linda Voiland School of Chemical Engineering and Bioengineering and in Biological System Engineering.

Click here to see more...
Subscribe to our Newsletters

Trending Video