Now, IPK reserachers unveiled a previously unrecognized mechanism by which signals in the vasculature of the barley inflorescence control plastid differentiation and nutrient signaling, thereby sustaining heterotrophic floral meristem growth and reproductive success. Their results prove that the circadian clock of the vasculature is required for a timely switch from the floral primordia initiation state to the growth state.
By conducting large scale floral meristem dissection and phenotyping, the researchers show that approximately 40% of the initiated floral primordia set grains while the rest are aborted, representing an untapped yield potential. "We further show that the number of initiated floral primordia is largely determined by flowering time genes, but the fates of the distal floral primordia are controlled by at least three independent quantitative trait loci", says Dr. Yongyu Huang, first author of the study.
"We identifed for the first time a vascular-expressed CCT Motif Family gene (HvCMF4) that is required for spikelet primordia growth and successful pollination", says Dr. Yongyu Huang. Moreover, the research team showed that HvCMF4 specifically functions after the initiation of spikelet primordia through the wiring of the circadian clock from the inflorescence vasculature to control greening of the neighboring tissue; and thus, autotrophic energy production. "This grain number determination mechanism has not been described before and appears to be unique to the Triticeae species, which features early inflorescence greening during spikelet initiation and differentiation."
Click here to see more...