Dr. Evan John, CCDM researcher and recent Ph.D. graduate, said he helped discover the element as part of his Ph.D. project, after the research team had noticed the Australian version of the wheat pathogen produced much higher levels of Tox1 than most other fungal strains collected from the Northern Hemisphere.
"After noticing the variation of Tox1, I collected data on the pathogen's genome from fungal samples collected from different countries to work out why this was happening," Dr. John said.
"I was then able to pinpoint and characterize the genetic element that allowed the pathogen to produce high levels of Tox1. This was widespread in Australian fungal strains of the disease but at low level in most US and European strains.
"We've been able to show that the pathogen has evolved to Australian conditions and can strongly recommend the removal of the Tox1 susceptible wheat gene called Snn1 from Australian breeding lines, to breed resistant wheat suited to local regions."
Dr. Kar-Chun Tan, CCDM project leader said the finding is significant as it explains the extreme difficulty of breeding disease resistant wheat.
"The discovery of the genetic element helps to explain the huge variability in toxic molecule production that exists out in the field—whether that pathogen is the one causing SNB, or potentially other pathogens causing other diseases too," Dr. Tan said.
Click here to see more...