Expanding Wheat Breeding Resources for Better End-Use Quality, Disease Resistance

Oct 07, 2019
The International Maize and Wheat Improvement Center (CIMMYT) reports that an international team of scientists has identified significant new chromosomal regions for wheat yield and disease resistance and created a freely-available collection of genetic information and markers for more than 40,000 wheat lines.
 
 
Reported recently in Nature Genetics, CIMMYT says the results will speed up global efforts to breed more productive and climate-resilient varieties of bread wheat, a critical crop for world food security that is under threat from rising temperatures, rapidly-evolving fungal pathogens, and more frequent droughts, according to Philomin Juliana, wheat scientist at CIMMYT and first author of the new study.
 
“This work directly connects the wheat genome reference map [published in 2018] with wheat lines and extensive field data from CIMMYT’s global wheat breeding network,” said Juliana. “That network in turn links to over 200 breeding programs and research centers worldwide and contributes to yield and other key traits in varieties sown on nearly half the world’s wheat lands.”
 
CIMMYT noted that the study found genomic selection could be particularly effective in breeding for wheat end-use quality and for resistance to stem rust disease, whose causal pathogen has been evolving and spreading in the form of highly-virulent new races.
 
 
Bread wheat improvement using genomic tools will be critical to accelerate genetic gains in the crop’s yield, disease resistance, and climate resilience. (Photo: Marcia MacNeil/CIMMYT)
“Farmers and societies today face new challenges to feed rising and rapidly-urbanizing populations, and wheat epitomizes the issues,” said Ravi Singh, CIMMYT wheat breeder and corresponding author of the study. “Higher temperatures are holding back yields in major wheat-growing areas, extreme weather events are common, crop diseases are spreading and becoming more virulent, and soil and water are being depleted.”
 
Juliana said the study results help pave the way to apply genomic selection, an approach that has transformed dairy cow husbandry, for more efficient wheat breeding.
 
“Molecular markers are getting cheaper to use; meanwhile, it is very costly to do field testing and selection involving many thousands of wheat plants over successive generations,” Juliana said. “Genome-wide marker-based selection can help breeders to precisely identify good lines in early breeding generations and to test plantlets in greenhouses, thereby complementing and streamlining field testing.”
Click here to see more...
Subscribe to our Newsletters

Trending Video