Jian and Steele's work focuses on carbon cycling and how plants and soil remove and return carbon dioxide in the atmosphere.
To understand how carbon affects the ecosystems on Earth, it's important to know exactly where all the carbon is going. This process, called carbon accounting, says how much carbon is going where, how much is in each of Earth's carbon pools of the oceans, atmosphere, land, and living things.
For decades, researchers have been trying to get an accurate accounting of where our carbon is and where it is going. Virginia Tech and Pacific Northwest National Laboratory researchers focused on the carbon dioxide that gets drawn out of the atmosphere by plants through photosynthesis.
When animals eat plants, the carbon moves into the terrestrial ecosystem. It then moves into the soil or to animals. And a large amount of carbon is also exhaled—or respirated—back into the atmosphere.
This carbon dioxide that's coming in and going out is essential for balancing the amount of carbon in the atmosphere, which contributes to climate change and storing carbon long-term.
However, Virginia Tech researchers discovered that when using the accepted numbers for soil respiration, that number in the carbon cycling models is no longer balanced.
"Photosynthesis and respiration are the driving forces of the carbon cycle, however the total annual sum of each of these at the global scale has been elusive to measure," said Lisa Welp, an associate professor of earth, atmospheric, and planetary sciences at Purdue University, who is familiar with the work but was not part of the research. "The authors' attempts to reconcile these global estimates from different communities show us that they are not entirely self-consistent and there is more to learn about these fundamental processes on the planet."
What Jian and Steele, along with the rest of the team, found is that by using the gross primary productivity of carbon dioxide's accepted number of 120 petagrams—each petagram is a billion metric tons—the amount of carbon coming out through soil respiration should be in the neighborhood of 65 petagrams.
By analyzing multiple fluxes, the amount of carbon exchanged between Earth's carbon pools of the oceans, atmosphere, land, and living things, the researchers discovered that the amount of carbon soil respiration coming out of the soil is about 95 petagrams. The gross primary productivity should be around 147. For scale, the difference between the currently accepted amount of 120 petagrams and this is estimate is about three times the global fossil fuel emissions each year.
According to the researchers, there are two possibilities for this. The first is that the remote sensing approach may be underestimating gross primary production.
Click here to see more...