Demographic Modeling Plays Back Tape Of Wheat Evolution

Demographic Modeling Plays Back Tape Of Wheat Evolution
Mar 22, 2023

Subscribe to our Newsletters

By Zhang Nannan

Wheat, which includes bread wheat and its relatives, is a staple food crop that feeds about 35% of the world's population. As one of the first ancient crops to appear in the Fertile Crescent, wheat has been cultivated for over 10,000 years since the "Neolithic Revolution" and is considered a transformative force in human society. Despite its economic importance and intimate bond with humanity, however, the population history of wheat is still unclear.

In a new study published in Nature Plants, researchers led by Lu Fei from the Institute of Genetics and Developmental Biology (IGDB) of the Chinese Academy of Sciences (CAS) have uncovered the evolutionary history of wheat during the Holocene.

In this study, Zhao Xuebo, Guo Yafei and their colleagues in Lu's group collected whole-genome sequences of 795 wheat accessions from six species and 25 subspecies in the genera Triticum and Aegilops (wheat). They then constructed a genus-level genetic variation map of wheat (VMap 1.1) with about 78 million single-nucleotide polymorphisms.

Using demographic modeling of the genomic data, the researchers found that bread wheat originated from a polyploidization event near the southwest coast of the Caspian Sea. However, continued  from its relatives resulted in a slow speciation process of bread wheat that lasted about 3,000 years. Bread wheat then rapidly spread across Eurasia, reaching Europe, South Asia, and East Asia between about 7,000 and 5,000 years ago.

The population size fluctuation of wheat from the past to the future.

The population size fluctuation of wheat from the past to the future.

The trans-Eurasian dispersal shaped a generally diverse but occasionally convergent bread wheat adaption landscape: the researchers found that three independent loss-of-function mutations in a prime flowering time gene (Ppd-D1), conferring early flowering phenotypes, helped bread wheat adapt to Europe, East Asia and South Asia, respectively.

Crop relatives are valuable for breeding resilient crops in a changing climate. However, the researchers identified a worrying decline in the  of some of bread wheat's most critical relatives due to changes in human diets and vulnerability to future climate change. For example, the population size of diploids and tetraploids in Triticum has declined by 82% over the last 2,000 years. This finding highlights the urgent need to protect and conserve wheat biodiversity.

Click here to see more...

Trending Video

IPTV M2M, Market Analyst Mark Gold

Video: IPTV M2M, Market Analyst Mark Gold

On this edition of Market to Market: Another day in court for the control of water on your operation. Commodity groups sound off on their interests for the next Farm Bill. Plus, how climate change may be playing a role in creating more powerful storms. And, market analysis with Mark Gold.