The Challenge
Photorespiration is a photosynthetic process that has been shown to reduce the yield of soybean, rice, and vegetable crops by up to 40%. Photorespiration occurs when Rubisco reacts with an oxygen molecule rather than CO2, which occurs around 25% of the time under ideal conditions but more frequently in high temperatures. Plants then have to use a large amount of energy to metabolize the toxic byproduct caused by photorespiration (glycolate). Energy that could have been used for greater growth.
“Photorespiration is a large energy cost for the plant,” said Meacham-Hensold. “It takes away from food production as energy is diverted to metabolizing the toxin. Our goal was to reduce the amount of wasted energy by bypassing the plant’s original photorespiratory pathway.”
Previous RIPE team members had shown that by adding two new genes, glycolate dehydrogenase and malate synthase, to model plants’ pathways, they could improve photosynthetic efficiency. The new genetics would metabolize the toxin (glycolate) in the chloroplast, the leaf compartment responsible for photosynthesis, rather than needing to move it through other regions of the cell.
The solution
These energy savings drove growth gains in the model crop, which the current team hoped would translate to increased mass in their food crop. Not only did they see a difference, the benefits, recently published in Global Change Biology, were tripled under heatwave conditions, which are becoming more frequent and more intense as global warming progresses.
Three weeks into the 2022 field season, while the potatoes were still in their early vegetative growth phase, a heatwave kept temperatures above 95°F (35°C) for four straight days, breaking 100°F (38°C) twice. After a couple of days of reprieve the temperatures shot up near 100° again.
Rather than withering in the heat, the modified potatoes grew 30% more tubers than the control group potatoes, taking full advantage of their increased thermotolerance of photosynthetic efficiency.
Click here to see more...