By Gloria Pallares
The way humanity eats today is undermining our very ability to continue feeding ourselves tomorrow.
Our food systems are the leading driver of terrestrial biodiversity loss, a key driver of land degradation, and the origin of up to one-third of greenhouse gas emissions. And yet, demand for food could double between 2005 and 2050.
So, how can we continue to meet this most basic of human needs in the decades to come?
Enter regenerative agriculture – a term that’s increasingly popping up in policy debates and corporate commitments, but whose precise meaning remains blurry. So, what exactly does it entail? How can it benefit us, and what will it take to put it into practice on a significant scale?
Here are five things you need to know about regenerative agriculture, why it matters, and how it can revolutionize the future of food.
What is regenerative agriculture?
There is no single set of internationally agreed principles for regenerative agriculture. Some definitions focus on processes – for instance, the use of cover crops and integration of livestock – while others emphasize outcomes, such as restoring the carbon content of the soil, or promoting biodiversity and ecosystem services.
However, the Africa Regenerative Agriculture Study Group, which is steered by partners like CIFOR-ICRAF and the UN Economic Commission for Africa, came up with a working definition ahead of COP26 in 2021.
Broadly, they see regenerative agriculture as encompassing both sustainable agroforestry techniques and conservation agriculture. This can include crop diversification, shade tree planting and reduced tillage to minimize physical, chemical and biological disturbances to the soil.
“These techniques really improve crop yields for farmers through increased soil nutrients and organic content, which reduces the need for fertilizers, and they reduce soil erosion, improve water retention and have biodiversity benefits as well,” says Cassandra Austen, a sustainable finance expert and coauthor of the Group’s 2021 report.
Conservation agriculture is based on soil management practices such as mulching and manuring, along with crop management practices like improved fallow and crop rotation and diversification. For example, regenerative farms may plant various species of cover crops together, vary crop rotations and maintain permanent vegetation in some areas to benefit pollinators and wildlife.
Meanwhile, agroforestry techniques leverage the ability of trees to store carbon, draw water and nutrients from soil, build soil organic matter and shelter biodiversity, according to CIFOR-ICRAF. Agroforestry can be crop-based, with practices such as alley cropping and fencing, or livestock-based, integrating trees and grazing operations – an approach known as silvopasture.
Agroforestry encompasses farmer-managed natural regeneration (FMNR) practices, whereby farmers use pollarding and coppicing to regenerate native species and enhance farm vegetation cover. Niger is one of the first countries in the world to have decreed FMNR as a low-cost practice to increase the productivity and resilience of crop fields and pasturelands.
“In the challenging growing conditions of Africa’s Sahel, a region bordering the southern Sahara Desert, it is a technology that has proven amongst the most transformative of all,” say members of the Regreening Africa initiative, an FMNR program co-financed and co-implemented by CIFOR-ICRAF.
Why is regenerative agriculture important?
Regenerative agriculture aims to boost efficiency and crop yields by restoring soil health and enhancing the biodiversity that underpins ecosystem services such as pollination.
At the same time, it also reduces the need for inputs like artificial fertilizers and pesticides. This helps build climate resilience and offers communities with additional sources of income.
In other words, regenerative agriculture is about using fewer planetary resources to produce more food – harnessing nature’s ability to revitalize, rather than deplete, agricultural landscapes so they can continue sustaining humanity in the long term.
Click here to see more...