The research is funded by a three-year Conservation Innovation Grant from the U.S. Department of Agriculture’s Natural Resources Conservation Service with in-kind support from the university, SDSU Extension and participating producers. Nafchi, who previously worked with cover crops in vegetables and row crops, such as corn and soybeans, at Cornell Cooperative Extension in Rochester, New York, reported 14 producers have signed up for the project.
The researchers will divide each cover crop field into zones based on the historical yield data including the producers’ knowledge about the field, soil characteristics and conditions, as well as disease and pest challenges. Based on the data, they will then determine the cover crop seed mixtures and the seeding rates for each zone.
Extension and NRCS personnel will use the results to help those already planting cover crops improve their results through a precision cover cropping system and to encourage more farmers to use cover crops to increase sustainability and profitability.
Considering soil characteristics
Cover crops improve soil health, which then contributes to better yields, Nafchi explained. Two key factors in increasing yields are water infiltration rate—how quickly the soil absorbs water—and water-holding capacity, which helps keep water and nutrients from running into adjacent lakes and streams. These factors are directly related to the organic matter in the soil.
Mapping the field will give the researchers data on the variability within the field. For example, measuring the soil’s ability to conduct electricity, known as electrical conductivity, helps quantify soil structure, Nafchi said. “When you have clay soil, the particles are closer together, so the (electrical conductivity) number will be higher. Sandy soil have air spaces, or voids, among the particles and less electrolytes, meaning nutrients wash away more easily, so electrical conductivity will be lower.”
To be able to identify drainage problems, the researchers will take shallow and deep electrical conductivity readings.

Incorporating tubers, such as these radishes, into the cover crop mixture can help break up compacted soil and add organic matter that will improve the soil’s water-holding capacity.
Making precise choices
Certain cover crops can improve the soil porosity and the void ratio, which are associated with water-holding capacity, Nafchi explained. Incorporating tubers, such as tillage radishes, into the cover crop mixture can help break up compacted soil and add organic matter that will also improve water-holding capacity.
The slope of a field can also be a factor in adjusting the cover crop planting to get a uniform stand, Nafchi continued. “On a north-facing slope, plants germinate later because of the cooler soil temperatures. If we compensate for the lag by choosing the right cover crop and a higher seeding rate, we will have uniform germination.”
Specific cover crops can also help reduce pressure from soil-borne diseases and pests. For instance, cereal rye and tillage radishes can help reduce soybean cyst nematode populations.
Combining these factors, along with producer input, will help the research team determine the best cover crop mixture and optimum seeding rate for each field zone, Nafchi said, emphasizing that “precision ag means using the right input in the right amount at the right place at the right time and in the right manner to help farmers increase profitability and sustainability.”
Source : sdstate.edu