The researchers collected data on sorghum, a globally cultivated cereal crop, grown in Iowa, Kansas and Puerto Rico over the span of multiple years. Measurements of plant height were taken at several points during the growing season, creating a large dataset on which the researchers applied statistical regression analyses to better understand the relationship between height and diurnal temperature change, or the difference in temperature between nighttime lows and daytime highs.
They found increases in diurnal temperature change tended to produce shorter plants. The trend was particularly distinct during that critical developmental phase around 40 to 53 days after planting.
“We found that these genes actually interact with environmental stimuli and control the maximum growth rate as well as time to reach maximum growth rate,” said Qi Mu, a postdoctoral research associate in agronomy and the first author of the study. “And that eventually determines the final plant height.”
Plasticity and climate change
Climate change increases the urgency of understanding phenotypic plasticity, Yu said. As climate change causes more volatile swings in weather, farmers and plant breeders will require better tools for predicting how crop varieties will perform under different environmental conditions. For instance, Yu said climate change could cause nighttime temperatures to rise in some locations, which would have significant ramifications for cultivating crops, as illustrated in the study.
Research into phenotypic plasticity will allow plant breeders to develop more precise tools for predicting how crops will perform across a range of environmental conditions, Mu said.
Click here to see more...