Imaging spectroscopy can help predict water stress in wild blueberry barrens, according to a University of Maine-led study.
The technology involves measuring the light reflected off of objects depicted in images captured by drones, satellites and other remote sensing technology to classify and gather pertinent information about the objects. According to researchers, it can precisely measure light across dozens, if not hundreds, of bands of colors. The reflectance spectra can depict nutrient levels, chlorophyll content and other indicators of health for various crops, according to researchers.
Scientists from UMaine, the Schoodic Institute and Wyman's, one of the world's largest purveyors of wild blueberries and the number one brand of frozen fruit in the country, found in their research that when incorporated into models, imaging spectroscopy can help predict whether wild blueberry fields will lack sufficient water for growing. Not only can the technology help inform growers as they evaluate irrigation routines and manage their water resources in a way that avoids damaging the crop, researchers say.
The team collected imaging spectroscopy data by deploying a drone equipped with a spectrometer for capturing visible and near-infrared light to photograph wild blueberry fields owned by Wyman's in Debois, Maine. Researchers then processed the images to measure reflected light spectra from the plants for indications of chlorophyll levels and other properties that would help estimate their water potential, which, they say, is the primary force driving water flow and an indicator of water stress. At the same time, the group collected small branches with leaves from wild blueberry plants in the plots to assess their water potential and validate the spectra-based estimation. Pictures and samples were collected in the spring and summer of 2019 when the plants experienced peak bloom, green fruit and color break.