New research published in The Plant Cell journal by the group of Dr. David Seung at the John Innes Centre have made a breakthrough in solving this problem.
The team used genomic and experimental techniques to show that A- and B-type granules are formed by two distinct mechanisms.
By identifying an enzyme involved in B-type granule initiation and by then using conventional plant breeding techniques to remove this protein, they were able to produce wheat with low or no B-granules—with no penalties on plant development and without reducing the overall starch content.
Added to previous studies by this group which have shed light on the shape and formation of A-type granules, the discovery has major implications says first author of the study Dr. Nitin Uttam Kamble:
"We discovered that the ubiquitous enzyme, (PHS1) is crucial for the formation of B-type granules in wheat. This is a scientific breakthrough because decades of research on this enzyme have failed to find a clear role for PHS1 in plants, and it shows that the A- and B-type granules of wheat form via different biochemical mechanisms. We can now use this knowledge to create variations in starch for different food and industrial applications."
Dr. David Seung, a group leader at the John Innes Centre added, "Industry does not generally like heterogeneity; it wants something nice and even to process smoothly and having these different types of starch granules in wheat has always represented a challenge.
"So, for us to discover the enzyme responsible for making the smaller granule population and to be able to use our breeding platform to reduce the number of B-type granules will hopefully be of great interest to many industry users.
"Combined together with our previous work, we now have a panel of diverse, novel wheat starches that vary in granule morphology, and these have diverse physical and chemical properties. We now invite businesses to work with us to investigate the potential benefits of these starches, such as in milling, pasta- and breadmaking."
Click here to see more...