Scientists seeking to unravel the details of how plants produce and accumulate oil have identified a new essential component of the assembly line. They discovered a particular sterol—a molecule related to cholesterol—that plays a key role in the formation of oil droplets.
"This research greatly extends our understanding of the molecular factors that govern the formation of lipid droplets, which are vital organelles for oil storage and metabolism in all eukaryotic organisms," said Changcheng Xu, a biologist at the U.S. Department of Energy's Brookhaven National Laboratory, who led the study. The findings, published in Nature Communications, may suggest new ways to engineer the oil content of a variety of plant tissues.
The work may be particularly important for informing genetic engineering strategies aimed at boosting the oil content of leaves and stems. These plant tissues usually do not accumulate oil, but they could be engineered as an abundant source of sustainable oils for making biofuels and other commodity products, the scientists say.
The findings also apply to the accumulation of oil in plant seeds, the main place oils naturally accumulate in plants. These natural reservoirs of plant oils provide nutrition for plant embryos and seedlings—as well as animals and humans.
"We found that a deficiency in a particular type of sterol causes a drop in oil accumulation in seeds and leaves," said Xu.
Green light for oil production
Xu and his team have been working for years to increase oil accumulation in plant leaves and stems.
"Leaves compared with seeds are much more abundant as a possible bioenergy material," he noted. "Also, because the oil in seeds is used for food, we're working to accumulate oil and other commodity bioproducts in non-seed parts of plants—like leaves and stems—to avoid competition between food and fuel."
Click here to see more...