By Fraunhofer Gesellschaft
With a satellite system that measures drought stress in plants, two researchers from the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI, have now founded the spin-off ConstellR. Their technology enables the agricultural sector to optimize the irrigation of areas under cultivation to increase crop yields. The first sensor system will be launched into space in early 2022 and be installed on board the International Space Station (ISS).
The global population is growing—and demand for food is growing along with it. Since arable land is limited, farmers will need to harvest more from the same area in the future, meaning that cultivation will have to be improved, too. One important lever is an ideal supply of water—because when plants respond to drought stress, they invest less energy into their fruits, thereby reducing the harvest. One major problem is the difficulty of measuring the condition of plants on the vast arable land that spans the world. Although satellite data has been used since the 1970s to provide a general overview, it remains relatively inaccurate. To date, scientists have primarily used visual and near-infrared sensors that detect the plant pigment chlorophyll which breaks down when plants are not watered enough. "But by then, it's already too late," says Max Gulde, a physicist at the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI, in Freiburg. "What we need is a technology that tells us within the space of a few hours whether plants have sufficient access to water."
Algorithms determine the temperature on the leaf's surface