"This really provides the possibility of engineering plants to potentially improve the ecosystem as global warming proceeds," said He, who is the John T. Wilson Distinguished Service Professor of Chemistry, Biochemistry and Molecular Biology. "We rely on plants for many, many things—everything from wood, food, and medicine, to flowers and oil—and this potentially offers a way to increase the stock material we can get from most plants."
Rice nudged along
For decades, scientists have been working to boost crop production in the face of an increasingly unstable climate and a growing global population. But such processes are usually complicated, and often result only in incremental changes.
The way this discovery came about was quite different.
Many of us remember RNA from high school biology, where we were taught that the RNA molecule reads DNA, then makes proteins to carry out tasks. But in 2011, He's lab opened an entire new field of research by discovering the keys to a different way that genes are expressed in mammals. It turns out that RNA doesn't simply read the DNA blueprint and carry it out blindly; the cell itself can also regulate which parts of the blueprint get expressed. It does so by placing chemical markers onto RNA to modulate which proteins are made and how many.
He and his colleagues immediately realized that this had major implications for biology. Since then, his team and others around the world have been trying to flesh out our understanding of the process and what it affects in animals, plants and different human diseases; for example, He is a co-founder of a biotech company now developing new anti-cancer medicines based on targeting RNA modification proteins.
He and Guifang Jia, a former UChicago postdoctoral researcher who is now an associate professor at Peking University, began to wonder how it affected plant biology.
They focused on a protein called FTO, the first known protein that erases chemical marks on RNA, which Jia found as a postdoctoral researcher in He's group at UChicago. The scientists knew it worked on RNA to affect cell growth in humans and other animals, so they tried inserting the gene for it into rice plants—and then watched in amazement as the plants took off.
"I think right then was when all of us realized we were doing something special," He said.
Click here to see more...