The researchers succeeded in doing this by introducing a light-sensitive switch into the guard cells of tobacco plants. This technology was adopted from optogenetics. It has been successfully exploited in animal cells, but the application in plant cells it is still in its infancy.
The team led by JMU biophysicist and guard cell expert Professor Rainer Hedrich describes their approach in the prestigious scientific journal Science Advances. JMU researchers Shouguang Huang (first author), Kai Konrad and Rob Roelfsema were significantly involved.
The group used a light-sensitive protein from the alga Guillardia theta as a light switch, namely the anion channel ACR1 from the group of channelrhodopsins. In response to light pulses, the switch ensures that chloride flows out of the guard cells and potassium follows. The guard cells lose internal pressure, slacken and the pore closes within 15 minutes. "The light pulse is like a remote control for the movement of the stomata," says Hedrich.
Anion channel hypothesis confirmed
"By exposing ACR1 to light, we have bridged the cell's own signalling chain, thus proving the hypothesis that the opening of anion channels is essential and sufficient for stomatal closure," Hedrich summarises the results of the study. The exposure to light had almost completely prevented the transpiration of the plants.
With this knowledge, it is now possible to cultivate plants with an increased number of anion channels in the guard cells. Plants equipped in this way should close their stomata more quickly in response to approaching heat waves and thus be better able to cope with periods of drought.
Click here to see more...