Ethylene is also a stress hormone that causes plants to adapt and become more resistant to oxidative stresses, including heat, soil salt, heavy metals and stresses potentially caused by climate change.
The researchers found that ethylene triggers root cells to secrete superoxide onto bacteria in root cells, causing bacteria to produce nitric oxide that detoxifies the superoxide. Nitric oxide combines with superoxide to form nitrate that is absorbed by root cells. In this process, bacteria in root cells make root hairs grow and supply root cells with nitrogen and other nutrients.
“This matters because it shows that the microbiome of plants is important for plant cell development, particularly root cell development, and nutrient supply,” said study co-author James White, a professor in the Department of Plant Biology in the School of Environmental and Biological Sciences at Rutgers University-New Brunswick. “Use of bacteria in plants may enable us to grow better developed and stress resistant crops that require less fertilizers, and thus will reduce environmental damage due to excess fertilizer applications with consequent runoff. Further, with the correct bacteria in crop plants, we may produce crops that are resistant to oxidative stresses stemming from climate perturbations, thus we may produce hardier and more resilient crops.”
Source : rutgers.edu