The new tool, which the researchers call the regional hydroeconomic optimization modeling framework (RHEO), draws on a host of data. The model incorporates long-term and seasonal rainfall forecasts; groundwater level data from the U.S. Geological Survey; soil characteristics for each county; the water consumption of each crop; the cost of irrigation on a county-level basis; crop price data from the U.S. Department of Agriculture; and crop production budget data from other agricultural researchers.
"All of this data is fed into RHEO, which then predicts the yield per unit area for each crop on a county-level basis," Kumar says. "For example, it would forecast how many bushels of corn, soy, sorghum or cotton you could grow per acre in a given county. It would also forecast what your irrigation costs would be for each of those crops and, taking those things into account, predict which crop and irrigation strategy would be most profitable and environmentally sustainable."
In their paper published in Water Resources Research, the researchers demonstrated the utility of the model by applying it to 31 years' worth of historical data from 21 counties in southwestern Georgia.
"We found that RHEO was able to predict variability in each of our four target crops, as well as identify irrigation strategies that would reduce related costs," Kumar says. "Ultimately, this proof-of-concept work demonstrates that RHEO could be used to reduce energy consumption associated with pumping groundwater, improve water efficiency and boost crop yield."
Click here to see more...