Petersen is a co-author of the paper, "Low-Cost, Computer Vision-Based, Prebloom Cluster Count Prediction in Vineyards," which published in the journal Frontiers in Agronomy. Jonathan Jaramillo, a doctoral student in Petersen's lab, is the paper's first author; Justine Vanden Heuvel, professor in the School of Integrative Plant Science Horticulture Section in the College of Agriculture and Life Sciences, is a co-author.
When workers manually count clusters on a vine, accuracy greatly depends on the person counting. In an experiment, the researchers found that for a panel of four vines containing 320 clusters, manual counts ranged from 237 to 309. Workers will count the number of grape clusters in a small portion of the vineyard to get an average number of clusters per row. Farmers will then multiply the average by the total number of rows to predict yields for a vineyard. When cluster numbers are miscounted, multiplying only further amplifies inaccurate yield predictions.
"We showed that compared to the technology, a farmer would have to manually count 70% of their vineyard to gain the same level of confidence in their yield prediction," Petersen said, "and no one would do that."
Click here to see more...