One strategy they and others have envisioned, and which has been trialed in areas such as the Great Barrier Reef, is coral transplantation. Researchers could replenish reefs damaged by climate change—or other anthropogenic insults, such as sedimentation or a ship grounding—with corals that had proved sturdy and able to survive in the face of tough conditions.
For this to work, however, would require the coral "survivors" to continue to display their resilient characteristics after being moved to a new environment.
"If you take a coral that is resistant to bleaching in its native habitat, it could be that the stress of moving to a new place might make them lose that ability," Barott says.
Just as a fern that grew well in the shade might wilt if moved to a sunny plot, the conditions of a new environment, including water flow rate, food access, light, and nutrient availability, could could affect the resilience of transplanted corals.
Barott and colleagues went after this question with an experiment in two reefs in Hawaii's Kaneohe Bay on the island of Oahu: one closer to shore with more stagnant waters and another farther from shore with higher flow. In each area, the researchers identified coral colonies that had resisted bleaching during the 2015 bleaching event and collected samples from them the following year. Corals are clonal organisms, and so a chunk taken from a colony can regrow and will have the same genetics as the "mother" coral. For each colony, they kept some samples on their native reef and transplanted others to the second reef.
After the corals had spent six months at their new location, the biologists also put coral samples from each site in tanks in the lab and simulated another bleaching event by raising the water temperature over a period of several days.
Carefully tracking the corals' health and the conditions of the surrounding environment, the team measured photosynthesis rates, metabolism, and calcification rates, as well as the health of the symbiotic algae. They found that bleaching-resistant corals stayed that way, even in a new environment.
"What was really novel is that we had this highly replicated experiment," Barott says, "and we saw no change in the coral's bleaching response."
The researchers also looked at how well the corals reproduced the summer that followed their collection. A coral's native site conditions had an impact on their future reproductive fitness, they discovered.
Click here to see more...