The AAUConvNeXt model, developed through multi-objective optimization using the AFOA-APM algorithm, offers an enhanced version of the UConvNeXt CNN architecture for segmenting rice lodging. The research method involved optimizing the number of channels in the model's convolutional layers to improve performance and efficiency.
Unlike the conventional approach where channels increase or decrease in a fixed pattern, the AAUConvNeXt model strategically adjusts channels, increasing them in layers that require high feature learning while reducing them in less critical layers to balance complexity and resource use.
The results from extensive experiments highlight the superiority of AAUConvNeXt over existing models. The optimized architecture achieved a Pixel Accuracy (PA) of 96.3%, Mean Pixel Accuracy (MPA) of 96.3%, and a mean Intersection over Union (mIoU) of 93.2%, outperforming other models like DeepLabV3+ and HRNet.
Additionally, AAUConvNeXt reduced parameter count and computational complexity by 8.66%, making it more resource-efficient.
The model's advanced feature extraction capabilities contributed to high segmentation accuracy, especially in distinguishing challenging rice lodging categories, including full, partial, and non-lodged states.
Ablation studies confirmed that combining AFOA with APOM significantly improved segmentation metrics, with AAUConvNeXt outperforming its predecessors. Furthermore, targeted channel adjustments optimized model complexity, allowing efficient learning of both early-stage and refined features.
Click here to see more...